Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries.
نویسندگان
چکیده
Tremendous effort has been put into developing viable lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent progress in addressing the various problems of sulfur cathodes, lithium sulfur batteries still exhibit significant capacity decay over cycling. Herein, we identify a new capacity fading mechanism of the sulfur cathodes, relating to Li(x)S detachment from the carbon surface during the discharge process. This observation is confirmed by ex-situ transmission electron microscopy study and first-principles calculations. We demonstrate that this capacity fading mechanism can be overcome by introducing amphiphilic polymers to modify the carbon surface, rendering strong interactions between the nonpolar carbon and the polar Li(x)S clusters. The modified sulfur cathode show excellent cycling performance with specific capacity close to 1180 mAh/g at C/5 current rate. Capacity retention of 80% is achieved over 300 cycles at C/2.
منابع مشابه
Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries.
Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cyc...
متن کاملA sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries
Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent me...
متن کاملPreparation of Hollow Fe2O3 Nanorods and Nanospheres by Nanoscale Kirkendall Diffusion, and Their Electrochemical Properties for Use in Lithium-Ion Batteries
A novel process for the preparation of aggregate-free metal oxide nanopowders with spherical (0D) and non-spherical (1D) hollow nanostructures was introduced. Carbon nanofibers embedded with iron selenide (FeSe) nanopowders with various nanostructures are prepared via the selenization of electrospun nanofibers. Ostwald ripening occurs during the selenization process, resulting in the formation ...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملEffects of Electrospun Carbon Nanofibers’ Interlayers on High-Performance Lithium–Sulfur Batteries
Two different interlayers were introduced in lithium-sulfur batteries to improve the cycling stability with sulfur loading as high as 80% of total mass of cathode. Melamine was recommended as a nitrogen-rich (N-rich) amine component to synthesize a modified polyacrylic acid (MPAA). The electrospun MPAA was carbonized into N-rich carbon nanofibers, which were used as cathode interlayers, while c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2013